Assignment Instructions

  1. 4 Rectangular CardStock Beams

beams

  1. Table of thickness
Color Thickness 1(mm) Thickness 2(mm) Average(mm)
Violet 4.2 3.4 3.8
Red 4.4 5.3 4.85
Green 4.8 3.4 4.1
Black 4.3 3.7 4.0

The beam dimensions used were $50.8mm\times 125mm$. The $50.8mm$ was used because that corresponds to the width dimensions of our sarrus linkages.

3-6. Experiments

5 mass values were used to produce a total of 15 deflection/force results. They ranged from 100 to 500 grams in 100g increments.

In the experiments, the black beam stayed on top whiles the others were used to produce the recorded values.

The images below show the different configuration setups used in the experiments.

Violet beam

beams

Unloaded

beams

100g

beams

200g

beams

300g

beams

400g

beams

500g

Red beam

beams

Unloaded

beams

100g

beams

200g

beams

300g

beams

400g

beams

500g

Green beam

beams

Unloaded

beams

100g

beams

200g

beams

300g

beams

400g

beams

500g

  1. Table of deflections
Mass(g) Deflection_Violet(cm) Deflection_Red(cm) Deflection_Green(cm)
100 2.0 2.0 1.5
200 4.0 6.0 2.5
300 6.5 8.0 4.0
400 7.5 9.0 6.0
500 8.0 9.0 7.5

Plots and Calculations

import numpy as np
import matplotlib.pyplot as plt

masses=list(range(100,600,100))
forces = [9.8*x/1000 for x in masses]
l=0.125 #length
w=0.0508 #width
t=0.0038 #thickness
I=w*(t**3)/12 #Inertia

#violet beam

vDeflect = [2,4,6.5,7.5,8.0]
vDeflect = [0.01*x for x in vDeflect]

plt.scatter(vDeflect,forces,color="black")
plt.title("Force-Deflection Plot with line of best fit")
plt.xlabel("deflection (m)")
plt.ylabel("Force(N)")

linear_model=np.polyfit(vDeflect,forces,1)
linear_model_fn=np.poly1d(linear_model)
x_s=np.arange(0,1.5)
plt.plot(vDeflect,linear_model_fn(vDeflect),color="blue")
plt.show()

png

FD=linear_model[0] #slope
E=(FD*(l**3))/(3*I) #Young modulus
E
165653333.11228323

$E = \frac{Pl^3}{3\delta I} =165653333.11228323 Nm^{-2}$

#red beam

rDeflect = [2,6,8,9,9]
rDeflect = [0.01*x for x in rDeflect]

plt.scatter(rDeflect,forces,color="black")
plt.title("Force-Deflection Plot with line of best fit")
plt.xlabel("deflection (m)")
plt.ylabel("Force(N)")

linear_model=np.polyfit(rDeflect,forces,1)
linear_model_fn=np.poly1d(linear_model)

plt.plot(rDeflect,linear_model_fn(rDeflect),color="red")
plt.show()

png

FD=linear_model[0] #slope
E=(FD*(l**3))/(3*I) #Young modulus
E
134174900.32769114

$E = \frac{Pl^3}{3\delta I} =134174900.32769114 Nm^{-2}$

#green beam

gDeflect = [1.5,2.5,4,6,7.5]
gDeflect = [0.01*x for x in gDeflect]

plt.scatter(gDeflect,forces,color="black")
plt.title("Force-Deflection Plot with line of best fit")
plt.xlabel("deflection (m)")
plt.ylabel("Force(N)")

linear_model=np.polyfit(gDeflect,forces,1)
linear_model_fn=np.poly1d(linear_model)

plt.plot(gDeflect,linear_model_fn(gDeflect),color="green")
plt.show()

png

FD=linear_model[0] #slope
E=(FD*(l**3))/(3*I) #Young modulus
E
175197146.5426206

$E = \frac{Pl^3}{3\delta I} = 175197146.5426206 Nm^{-2}$

E_mean = np.mean([175197146.5426206,134174900.32769114,165653333.11228323])
E_mean
158341793.32753167

Using the mean of the 3 values, the yound modulus is approximated as
$E= 158MPa$

The formula for stiffness $k$ is given as \

$k=E\cdot {\frac {A}{L}}$

where

E is the (tensile) elastic modulus (or Young's modulus),
A is the cross-sectional area,
L is the length of the element.
k = E_mean*t*w/l
k
244530.39827157368

$k= 244530Nm^{-1}$