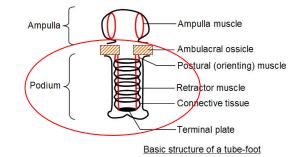

## Team 5- Project Update

#### Members:


Gilgal Ansah Javon Grimes Jonathan Nguyen Jacob Sindorf

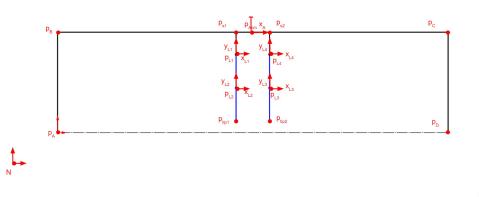
#### **Refined Research Question:**

"How can foldable techniques translate a small number of actuators into unique locomotion?"

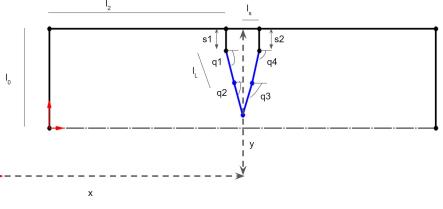


### **Current Specifications**



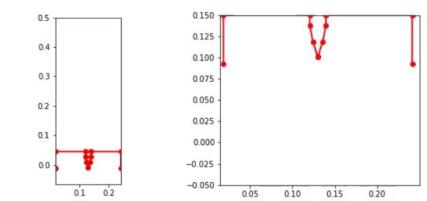

- Bio-Inspiration change
  - $\circ$  Lumbricus Terrestris peristalsis  $\rightarrow$  starfish tube foot (podia)
  - More interesting motion through foldable techniques.
- Spec Changes?
  - Cardstock still viable; can be layered for strength/stiffness.
  - $\circ$  Only need to support weight of actuator/power source/controller  $\rightarrow$  Number of actuators remains the same.
    - More actuators → more complex motion achievable
  - Sarrus linkage properties able to be reused.

**Figure 4**: Basic structure of a tube foot [1]




# Dynamics

#### Figure 5: Device point and frame diagram




#### Figure 6: Device differentiable var and length diagram



- Forces Considered:
  - Gravity
  - Leg spring force
  - Sarrus Linkage force (sin wave)
  - Floor force (normal/friction)
- Justification:
  - $\circ \quad \text{Simplified sarrus linkages} \rightarrow \text{variable} \\ \text{lengths with spring preload}$

Figure 7: System dynamics results



#### Data Collection, Parameter Id, and Model Fitting

### **Prototype and Motion**



Figure 3: System motion concept




Figure 8: Prototype concept, up and down



Figure 9: Prototype concept, walking

#### Data Collection, Parameter Id, and Model Fitting

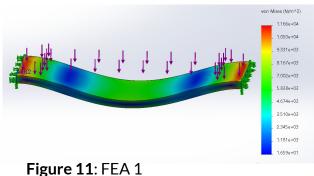

### **Cantilever Beam and Stiffness**

Table of deflections

| Mass(g) | $Deflection\_Violet(cm)$ | $Deflection\_Red(cm)$ | Deflection_Green(cn | n)                     |
|---------|--------------------------|-----------------------|---------------------|------------------------|
| 100     | 2.0                      | 2.0                   | 1.5                 |                        |
| 200     | 4.0                      | 6.0                   | 2.5 E =             | = 158MP a              |
| 300     | 6.5                      | 8.0                   | 4.0                 |                        |
| 400     | 7.5                      | 9.0                   | 6.0 k =             | 244530Nm <sup>-1</sup> |
| 500     | 8.0                      | 9.0                   | 7.5                 |                        |

#### Table 1: Deflections of Cardstock

Figure 10: Stiffness Test



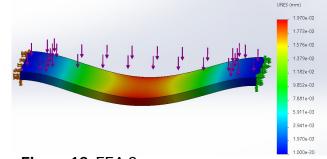
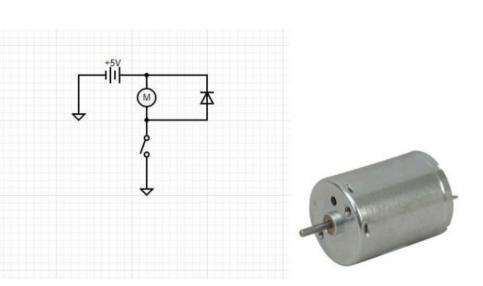



Figure 12: FEA 2




#### Data Collection, Parameter Id, and Model Fitting

## Motor Analysis and System Weight

| Metric              | Value    |  |
|---------------------|----------|--|
| Voltage Range (VDC) | 3-12     |  |
| Max Current (A)     | 0.17     |  |
| Max Torque (N-m)    | 0.002481 |  |
| Pulley Radius (cm)  | 2.54     |  |
| Force(mN)           | 97.68    |  |
| Motor Weight (g)    | 50       |  |
| System Weight (g)   | 57       |  |

 Table 2: Motor Specifications



**Figure 13**: Motor circuit diagram and DC motor

#### **Future Plans**

- Finalizing dynamics
- Springs
- Buying materials
- Build full prototype

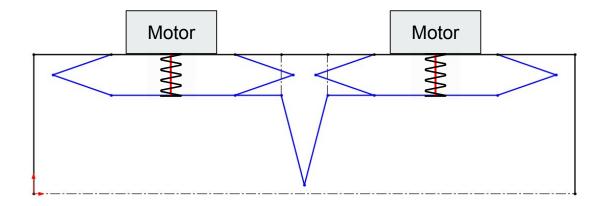
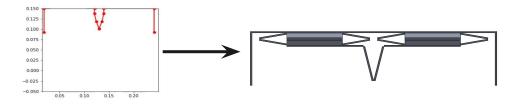




Figure 14: Future plans system prototype



#### References

[1] Cronodon BioTech, Asteroid mechanics, "Asteroids 2- Hydraulic systems" https://cronodon.com/BioTech/Asteroids\_hydraulics.html