Bibliography

Research Question

[1] C. D. Onal, R. J. Wood and D. Rus, “An Origami-Inspired Approach to Worm Robots,” in IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 430-438, April 2013, doi: 10.1109/TMECH.2012.2210239.
[2] Banerjee, H., Pusalkar, N., and Ren, H. (September 7, 2018). “Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot.” ASME. J. Mechanisms Robotics. December 2018; 10(6): 064501. https://doi.org/10.1115/1.4041200
[3] B. Winstone, T. Pipe, C. Melhuish, M. Callaway, A. C. Etoundi and S. Dogramadzi, “Single motor actuated peristaltic wave generator for a soft bodied worm robot,” 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 2016, pp. 449-456, doi: 10.1109/BIOROB.2016.7523668.
[4] J. Koh and K. Cho, “Omegabot : Biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM),” 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, 2009, pp. 1154-1159, doi: 10.1109/ROBIO.2009.5420752.
[5] Xintian Tang, Kai Li, Yingxiang Liu, Dong Zhou, Jianguo Zhao, A soft crawling robot driven by single twisted and coiled actuator, Sensors and Actuators A: Physical, Volume 291, 2019, Pages 80-86, ISSN 0924-4247
https://doi.org/10.1016/j.sna.2019.03.049 [6] David Zarrouk et al 2016 Bioinspir. Biomim. 11 046004

Biomechanics

[1] “Common Earthworm,” National Geographic. [Online]. Available: https://www.nationalgeographic.com/animals/invertebrates/c/common-earthworm/.
[2] “COMMON EARTHWORM (LUMBRICUS TERRESTRIS).” [Online]. Available: https://hailhydraskeletalsystem.weebly.com/common-earthworm-lumbricus-terrestris.html.
[3] K. A. Daltorio, A. S. Boxerbaum, A. D. Horchler, K. M. Shaw, H. J. Chiel, and R. D. Quinn, “Efficient worm-like locomotion: Slip and control of soft-bodied peristaltic robots,” Bioinspiration and Biomimetics, vol. 8, no. 3, 2013.
[4] E. N. Kanu, K. A. Daltorio, R. D. Quinn, and H. J. Chiel, “Correlating kinetics and kinematics of earthworm peristaltic locomotion,” Lect. N \otes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9222, pp. 92–96, 2015. [5] T. G. Piearce, “Functional morphology of lumbricid earthworms, with special reference to locomotion,” J. Nat. Hist., vol. 17, no. 1, pp. 95–111, Feb. 1983.
[6] K. J. Quillin, “Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris,” J. Exp. Biol., vol. 201, no. 12, pp. 1871 LP – 1883, Jun. 1998.
[7] K. J. Quillin, “Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris,” J. Exp. Biol., vol. 202, no. 6, pp. 661 LP – 674, Mar. 1999.
[8] T. Nakamura, T. Kato, T. Iwanaga, and
and Yoichi Muranaka, “Development of a Peristaltic Crawling Robot Based on Earthworm Locomotion,” J. Robot. Mechatronics, vol. 18, no. 3, pp. 299–304, 2006.
[9] A. Kandhari, A. Mehringer, H. J. Chiel, R. D. Quinn, and K. A. Daltorio, “Design and Actuation of a Fabric-Based Worm-Like Robot,” Biomimetics , vol. 4, no. 1. 2019.
[10] C. D. Onal, R. Wood, and D. Rus, “An Origami-Inspired Approach to Worm Robots,” Mechatronics, IEEE/ASME Trans., vol. 18, pp. 430–438, Apr. 2013.
[11] D. Zarrouk, M. Mann, N. Degani, T. Yehuda, N. Jarbi, and A. Hess, “Single actuator wave-like robot (SAW): design, modeling, and experiments,” Bioinspir. Biomim., vol. 11, no. 4, p. 46004, 2016.
[12] G. Miller, The motion dynamics of snakes and worms, vol. 22. 1988.
[13] K. J. Quillin, “Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris,” J. Exp. Biol., vol. 203, no. 18, pp. 2757–2770, 2000.
[14] Jim, “Random Worm Facts,” Uncle Jim’s Worm Farm. [Online]. Available: https://unclejimswormfarm.com/random-worm-facts/.
[15] L. T. L and B. Y. M. K. Seymour, “Locomotion and Coelomic Pressure in Lumbricus Terrestris L,” J. Exp. Biol., vol. 51, no. 1, pp. 47–58, 1969.
[16] R. Liu and Y. Yao, “A novel serial–parallel hybrid worm-like robot with multi-mode undulatory locomotion,” Mech. Mach. Theory, vol. 137, pp. 404–431, 2019.

Presentaion 1

[1] R. Liu and Y. Yao, “A novel serial–parallel hybrid worm-like robot with multi-mode undulatory locomotion,” Mech. Mach. Theory, vol. 137, pp. 404–431, 2019.
[2] G. Miller, The motion dynamics of snakes and worms, vol. 22. 1988.
[3] K. A. Daltorio, A. S. Boxerbaum, A. D. Horchler, K. M. Shaw, H. J. Chiel, and R. D. Quinn, “Efficient worm-like locomotion: Slip and control of soft-bodied peristaltic robots,” Bioinspiration and Biomimetics, vol. 8, no. 3, 2013.
[4] C. D. Onal, R. Wood, and D. Rus, “An Origami-Inspired Approach to Worm Robots,” Mechatronics, IEEE/ASME Trans., vol. 18, pp. 430–438, Apr. 2013.
[5] T. Nakamura, T. Kato, T. Iwanaga, and
and Yoichi Muranaka, “Development of a Peristaltic Crawling Robot Based on Earthworm Locomotion,” J. Robot. Mechatronics, vol. 18, no. 3, pp. 299–304, 2006.